

Sample Probe Design Calculation Datasheet (based on ASME PTC 19.3 TW-2010)

Conax P/N: Z98765-1

Tag Number: SPA/PG5(ASDFG)

Date: 08-May-20

Customer: RAm Systems

Conax S/O No.: G99999C

Sample Probe Parameters

Probe Material:	316 SST	Fluid Media:	Glycerin
Configuration:		T = Operating Temperature:	100 °F
A = Shank Diameter:	.75 in	P = Operating Pressure:	100 PSI
B = Tip Diameter:		V = Operating Fluid Velocity:	10 ft/s
d = Bore Diameter:	.5 in	V _{IR} = In-Line Resonance Velocity:	12.32 m/s
L = Overall Length:	15 in	μ = Dynamic Viscosity:	
U = Unsupported Length (Z+Y):	0.211 m	ν = Kinematic Viscosity:	0.00036 St
Y = Shielding Length	5 in	ρ = Fluid Density	.2 lb/in³
Z = Insertion Length:	3 in	<i>N_{Sc}</i> = Scruton Number:	0.004
F _i = Insertion Force:	196.52 N	<i>R_e</i> = Reynolds Number:	2142956.1

Note: The Sample Probe Assembly Configuration falls outside the scope of ASME PTC 19.3 TW-2010, which was specifically developed for Thermowell Configurations. However, based on similar mounting methods and geometries, the analysis methodology of ASME PTC 19.3 TW-2010 will be applied to the Sample Probe Assembly configuration as an effort to validate its design acceptability.

Acceptance Criteria (Based on values for *R_e*, *N_{Sc}* and Fluid Type, use Acceptance Criteria: Case {x})

- Case 1: For Gaseous Fluid Media and N_{sc} > 2.5 and R_e < 10⁵, In-Line Resonance is Suppressed and f_s < 0.8 f_n^c
- Case 2: For Gaseous Fluid Media and if N_{Sc} > 64 and R_e < 10⁵, both In-Line and Transverse Resonance is suppressed. Analysis techniques are beyond the scope of ASME PTC 19.3 TW-2010.
- Case 3: For Gaseous Fluid Media and if $N_{Sc} \le 2.5$ or $R_e \ge 10^5$, or for Liquid Media, the following conditions apply: a) If the SPA **PASSES** cyclic stress conditions at In-Line Resonance (S_{o,max}), then $f_s < 0.8 f_n^c$ b) If the SPA **FAILS** cyclic stress conditions at In-Line Resonance (S_{o,max}), then $f_s < 0.4 f_n^c$

S _{VM} (Von Mises Stresses) < 1.5 x S _T (Allowable Material Stress Limit)	1.5 X S _T =
S _{o,max} (Cyclic Stresses) < F _t F _e S _f ((Adjusted Materail Fatigue Limit)	F _e S _f = 8,757.7 psi

Frequency & Stress Analysis Results

Vortex Shedding Frequency (f _s)	35.2 Hz	$f_r = f_s / f_n^c$ Frequency Ratio	0.165
Resonant Frequency (f ^c)	213.4 Hz	Frequency ratio limit	0.8

Stress Parameter	At Process Velocity (V)		<i>At In-Line Resonance Velocity (V _{IR})</i>	
S _{VM} = Von Mises Stresses:	23239 KPa	Pass	371257 KPa	Fail
S _{o,max} = Peak Cyclic Stresses:	38542 KPa	Pass	612054133 KPa	Fail

Conclusion

Frequency Analysis pass/fail: 1 Stress Analysis pass/fail: Fail Sample Probe Assembly design pass/fail: Fail Dampening Factor $\zeta = 0.0005$