

Sample Probe Design Calculation Datasheet (based on IEC/TR 61831)

Conax P/N: Test	Date: 14-Jul-20		
Tag Number: Test	Customer: Test		
	Conax	S/O No.: Test	
Sample Probe Parameters			
Probe Material:	316 SST	Fluid Media:	other
ρ _m = Probe Material Density:	7,916.45271353 kg/m³	T = Operating Temperature:	100 °F
$\sigma_{\rm YS}$ = Yield Strength at Temp:	20,000 PSI	P = Operating Pressure:	50 PSI

28,300,000 PSI

25 mm

13 mm

.5 m

14.961 in

.3 m .08 m

Z = Insertion Length:

E_T = Modulus of Elasticity at Temp:

Do = Probe Outside Diameter:

U = Unsupported Length (Z+Y):

D_i = Probe Inside Diameter:

Acceptance Criteria

L = Overall Length:

Y = Shielding Length

Eq. 1)
$$U_{max}^{2} = 0.90 \text{ x} \frac{0.23 \text{ f}_{M} \text{ D}_{o}}{\text{S}_{t} \text{ u}} \sqrt{\frac{\text{E}_{T}}{\rho_{m}}} (\text{D}_{o}^{2} + \text{D}_{i}^{2})$$
 Eq. 2) $\sigma_{t} = \sigma_{f} + \sigma_{w}$

V = Operating Fluid Velocity:

 S_t = Strouhal Number (as per spec)

µ = Dynamic Viscosity:

f_M = Fluid Mass Factor:

ρ = Fluid Density

F_i = Insertion Force:

5 m/s

.005 cP

1.0

.5 kg/m³

0.20

38.04 lbf

Notes:

1.) Reference IEC/TR 61831 for additional support equations.

2.) Equation 1 represents the Maximum allowed un-supported probe length constrained by Vortex Shedding with an applied 90% Safety Factor. Based on IEC/TR 61831 Equation B.5 adapted for English units. (Criteria: $U \le U_{max}$)

3.) Equation 2 represents the Total Bending Stress (σ_t) from Flow (σ_t) and the Weight (σ_w) of the probe for worst case horizontal mounting installations. (Criteria: $\sigma_t < \sigma_{YS}$)

• Max Allowed Probe Length $U_{max} = 21.752$ in Is U $\leq U_{max}$? Pass

• Bending Stress from Flow $\sigma_f = 1 \text{ PSI}$

• Bending Stress from Weight $\sigma_w = 329 \text{ PSI}$

• Total Bending Stress $\sigma_t = 330 \text{ PSI}$ Is $\sigma_t < \sigma_{YS}$? Pass

Conclusion

Is the Sample Probe Assembly design acceptible? Pass